Computing Forgotten Eccentric Topological Index of Complement of Line Graphs

نویسندگان

چکیده

The forgotten topological index of a graph G is defined as the sum cube degrees its vertices. In this paper we establish eccentric complement line graphs and it denoted by . These are (v).e(v), where (edge vertex degree) some upper lower bounds for them.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remark on Forgotten Topological Index of a Line Graphs

Let G be a simple connected graph with n vertices and m edges and let d(e1) > d(e2) > · · · > d(em) be edge degree sequence of graph G. Denote by EF = ∑m i=1 d(ei) 3 reformulated forgotten index of G. Lower and upper bounds for the invariant EF are obtained.

متن کامل

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

متن کامل

On the forgotten topological index

The forgotten topological index is defined as sum of third power of degrees. In this paper, we compute some properties of forgotten index and then we determine it for some classes of product graphs.

متن کامل

Computing Szeged index of graphs on ‎triples

ABSTRACT Let ‎G=(V,E) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎V‎‎‎ ‎and ‎edge ‎set ‎‎‎E. ‎The Szeged index ‎of ‎‎G is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎G ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎If ‎‎‎‎S ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎V ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎S ‎of ‎size ‎3. ‎Then ‎we ‎define ‎t...

متن کامل

Graphs with smallest forgotten index

The forgotten topological index of a molecular graph $G$ is defined as $F(G)=sum_{vin V(G)}d^{3}(v)$, where $d(u)$ denotes the degree of vertex $u$ in $G$. The first through the sixth smallest forgotten indices among all trees, the first through the third smallest forgotten indices among all connected graph with cyclomatic number $gamma=1,2$, the first through<br /...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of mathematics and computer research

سال: 2022

ISSN: ['2320-7167']

DOI: https://doi.org/10.47191/ijmcr/v10i10.03